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TRANSMISSION OF CONCENTRATED FORCES
INTO PRISMATIC SHELLS-I
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Abstract-The work deals with the membrane and bending fields induced in prismatic shells by concentrated
forces that are applied at the joints or ridges between two plates. Since many of the basic questions have little
to do with supports or finite boundaries, an unbounded prismatic shell consisting of two semi-infinite plates is
considered. This geometry lends itself to a straightforward analysis by Fourier transforms, and the results can be
expressed in terms of exponential integrals of complex arguments for which tables are available. When the
concentrated force lies in the plane of symmetry and is perpendicular to the ridge, an unexpected result is that the
membrane forces remain bounded at the load point. In contrast, the moments and transverse shearing forces are
singular at the point ofloading. The asymptotic forms of the far fields show that the membrane forces decay more
slowly than the moments and shearing forces. Thus the orders of the near and far fields reveal that the symmetri­
cally applied perpendicular force is transferred into the prismatic shell principally through bending, and diffused
far away through membrane action.

INTRODUCTION

TRANSMISSION of loads in prismatic shells involves the interaction between membrane and
bending fields. If the conditions ofequilibrium are written in the undeformed configuration,
as is normally done to make the analysis mathematically feasible in problems not involving
questions of stability, there is no coupling between extension and bending in the differential
equations. The two fields are coupled, however, in the boundary conditions that must be
satisfied at the joints between the individual plates.

Prismatic shells because of their widespread applications have received considerable
attention in the technical literature, as attested by a survey conducted under the auspices of
the ASCE [1] in 1963. Nevertheless, relatively few specific cases have been treated by
satisfying the differential equations and boundary conditions exactly [2-5], and the majority
of the investigations appear to deal with approximate techniques for design purposes.

One of the most fundamental problems in any situation governed by linear differential
equations is the study of fields induced by certain point "sources". Such point sources in
the theory of plates and shells are concentrated loads. Surprisingly, no singular solutions
involving concentrated forces or other actions at a point have been derived and investigated
for prismatic shells. Although in some ofthe previous work [3-5] column reactions have been
incorporated as line loads, and concentrated forces could perhaps in principle be obtained
as limiting cases, these solutions are in the form of series that involve boundary conditions
at transverse supports, and they do not readily yield answers to many pertinent questions.

The present work deals with the membrane and bending fields induced in prismatic
shells by concentrated forces that are applied at a joint or ridge between two plates. Since
many of the basic questions have little to do with supports or finite boundaries, it suffices at
first to consider an unbounded prismatic shell consisting of two semi-infinite plates, as
shown in Fig. l(a). This geometry lends itself to a straightforward analysis by Fourier
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transforms, while the concentrated forces can be incorporated in the formulation through
delta functions. It should be realized at the outset, however, that the present analysis is
probably incapable of giving reliable numerical results very near the ridge. Not even speak­
ing about the obvious oversimplifications used in this work if the problem is viewed from
the point of three-dimensional elastostatics, the coupling of the extentional and flexural
fields at the ridge is also problematic within the theories of plane stress and bending of thin
plates. This is particularly so because two of the boundary conditions involve the sup­
plemented or Kirchhoff shearing forces. It appears reasonable to expect, on the other hand,
that the analysis will predict the correct trends even in the vicinity of the ridge.

\ hzz
\

\

(a) (b)

FIG. 1. Unbounded prismatic shell, loads and coordinate systems.

Any of the common representations of the membrane field, such as the Airy stress
function or the Papkovich-Neuber displacement potentials are suitable for the problem
considered. As the boundary conditions at the ridge involve extensional displacements,
there may be a slight advantage, however, in using the displacement potentials. Placing the
coordinate system in relation to the prismatic shell as shown in Fig. I, and measuring
distances in terms of the thickness h of the individual plates, the extensional displacements
are computed from the displacement potentials cp(x, y) and t/!(x, y) as

3- v acp 1 at/!
2Gu = --cp-x--- -

x 1+ v ox h ox'
(1)

ocp 1 ot/!
2Guy = -x---­

oy hoy'

where G and v denote the shear modulus and Poisson's ratio, respectively. Equations (I)
are simply the general expressions connecting displacements and displacement potentials
[6J that have been specialized for plane stress. It may be noted that x and yare dimension-
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less, and that distances al.ong the axes are hx and hy. The membrane forces follow from
Hooke's law as

(2)
1- v aq> a2q> 1 a21jJ

N =--~-X-~----,
xy I + v ay axay h axay

2v aq> a2q> 1 a21jJ
N =--~-x----

yy I + v ax ay2 h ay2 .

For equilibrium of the membrane forces, the displacement potentials must be plane
harmonic functions, or

V'2q>(X, y) = V'21jJ(X, y) = 0. (3)

The bending field can be specified through the transverse deflection w(x, y) of the middle
plane of the plate. The moments and the transverse shearing forces are derived from
w(x, y) using the formulas [7]

(4)
M xx = - D(~:~ + v~:~), etc.,

a 2
- Dax V' w, etc.,

where D = Gh3/6(1- v) is the flexural rigidity. Since no distributed transverse loads are
considered, w(x, y) is a plane biharmonic function, or

V'4W(X, y) = 0. (5)

For the directions of the coordinate axes shown in Fig. l(b), the boundary conditions
at the ridge are

(u~l)+ U~2)) sin IX - (w(l) - W(2») cos ex = 0,

(U~l) - U~2») cos IX +(w(l) +W(2») sin ex = 0,

u(l) - U(2) = °y y ,

(6)

(7)

(8)

aw(l) aw(2)
---=0
aXl aX2 '

M~~+M~Z; = 0,

(N~~ - N~Z;) sin ex - (V~!) + V~2)) cos C( = 0,

(N~~ + N~Z;) cos (X + (V~l) - V~2») sin (X = 0,

N(!) + N(2) = °xy xy ,

(9)

(10)

(11 )

(12)

(13)

where the superscripts 1 and 2 refer to the two sheets shown in Fig. l(b), and Vx denotes the
supplemented shearing force that includes the derivative of the twisting moment. The first
four boundary conditions pertain to the requirement ofcontinuous deformations, while the
last four enforce Newton's third law. Tn considering the three specific cases of loading



1630 J. DUNDURS and M. G. SAMUCHIN

indicated Jl1 Fig. l(a), the last three boundary conditions must be appropriately supple­
mented with delta functions to incorporate the given concentrated forces in the formulation.
Jt may also be noted that the first three boundary conditions must be satisfied only within
arbitrary rigid-body displacements. Therefore (6) and (7) can be differentiated twice and (8)
once with respect to y at no loss of conditions that determine the solution.

The boundary conditions at infinity can neither be specified by a physical argument.
nor predicted in advance on mathematical grounds without attempting to solve the
problem. However, this question can be left open for the time being, as the proper, and in
fact the only admissible boundary conditions evolve in the course of solution.

The problem proposed yields readily to a routine application of the Fourier exponential
transform [8]. Since numerous books and papers give sufficient details for mathematically
analogous problems, this part ofthe analysis can safely be omitted. It may only be mentioned
that the program is always the same: applying the Fourier exponential transform with
respect to y reduces the partial differential equations (3) and (5) to simple ordinary dif­
ferential equations that can be integrated. This yields the transforms of cp, lj; and win terms
ofthe still unknown integration constants. Next, the transforms are applied to the boundary
conditions. Substitution of the transforms of cp, lj; and w into the transformed boundary
conditions leads to simultaneous algebraic equations for the integration constants. Once
the integration constants have been determined, the quantities cp, lj; and w can be obtained
from the inversion formula for the Fourier transform. Since it can be verified by a direct
substitution that the solutions satisfy the field equations and the boundary conditions, only
the final results will be given.

The present problem includes the completely folded plate (ex = 0) and the flat plate
(ex = n12) as limiting cases. It can be expected at the outset, therefore, that the Fourier
exponential transform will yield divergent integrals for some of the field quantities, such
as the extensional displacements and the transverse deflection. However, if the divergent
integrals are replaced by certain elementary functions, it can be verified that the resulting
fields satisfy the differential equations (3) and (5), and the boundary conditions (6HI3).

AUXILIARY FUNCTIONS

Although the field quantities, for which the Fourier transform yields convergent
inverses, can be expressed through exponential integrals of complex arguments, it is
convenient to introduce the following four higher transcendental functions:

(et)e-xtcosyt
Co(x, y; a) = J

o
--"t2 +'~2 dt,

i
x, e-Xl sin yt

So(.x, y; a) = "'-2---2- dt,
o t +a

J
Y) te - xt cos yt

C (x V· a) = --'--- dt,
1 '.' 0 t 2 +a2

J
et) te-Xl sinyt

Sl(x,y;a) =--2--2- dt,
o t +a

(14)
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with X > 0, - 00 < y < 00 and a2 > O. The derivatives of these auxiliary functions are

(15)

(16)

where r2 = x2 + y2. It is seen from these expressions that the auxiliary functions are
harmonic.

Combining the auxiliary functions pairwise into functions of the complex argument
z = x + iy, they can be related to cosine and sine integrals.t These may in turn be expressed
through the exponential integral of a complex argument for which numerical tables are
available [10]. Thus,

t See Ref. [9, No. 4.2.14].

2aCo = - Im{ eiaZE 1(iaz) -e - iazE 1( - iaz)},

2aSo = - Re{eiaZEt(iaz)-e-iaZE1( - iaz)} ,

2C1 = Re{eiazE 1(iaz) +e- iaZE 1( - iaz)} ,

2S t = - Im{eiazE 1(iaz) +e -iazE1(- iaz)} ,

(17)
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larg zl < n, (18)

with the restriction that the path of integration in (18) neither passes through the origin.
nor crosses the negative real axis.

The asymptotic forms of the four auxiliary functions for r -> 0 and r ->X could be
obtained from the known properties of the exponential integral, but they are equally easy
to deduce directly. For instance, with x = r cos 0 = rp and y = r sin 0 = rq,

(19)

Rewriting (19) as

(20)

it is seen that the last two integrals remain bounded as r -> 0, while the first integral can be
evaluated to yield -log(ar) in the limit. Thus, for r -> 0,

Co(X, y) = 0(1).

So(x, y) = 0(1),

C1(X,y) = -logr+O(l),

S 1 = 0 = arctan(ylx).
(21)

It may also be noted that, for r -> 0, the dominant parts in the derivatives of the four
auxiliary functions are the same as the derivatives ofcertain elementary harmonic functions.
The correspondences are

Co(X, y):x log r- yO,

So(x, y): (xO+ y log r),

Cj(x,y): logr,

Sl(X,y):O.

Using the identity

1 1 t 2

t2+a2r2 = ~2r2 - a2r2(t2+ a2r2)'

which is obtained by dividing a2 r 2 + t 2 into 1, we have from (19)

1 JW 1 JWt3e-ptcosqt
C1(x,y) = --22: te-ptcosqtdt--2- z --2--~dt.

a r 0 a rot +a r

(22)

(23)

(24)

The first integral in (24) can be evaluated to yield (- 1+ 2p2). The second integral vanishes
as r -> 00 and, therefore, the last term in (24) is of 0(r- 2). If, however, the division in (23)
were carried one step further, the last term in (24) would be seen to be of 0(r- 4

). Additional
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(25)

terms in the expansion can be obtained by continuing the process of division indicated in
(23). This approach leads to the following results for r --+ rxJ :

2 x 2 (3X 4X
3
) _5a Co(x,y) = 2+24--6 +O(r -),

r a r r

2 y 2(Y 4x
2y) -5a So(x, Y) = 2+2"4 -6- +O(r ),

r a r r

1 2x
2 6(1 8x

2
8X

4
)a2 C l (x,y) = --+ ---+_ +0(r- 6 ),

r2 r4 a2 r4 r6 r8

2 2xy 24(XY 2x3y) -6
a Sl(X,y) =~+2 6"--8- +O(r ).

r a r r

It can also be shown that not only the dominant parts of the auxiliary functions themselves,
but also those of their derivatives for r --+ rxJ are identical with the derivatives ofelementary
harmonic functions according to the scheme:

a2 CO(x, y): cos elr,

a2So(x, y): sin elr,

a2C l(X, y): cos 2elr2
,

a2S 1(x, y): sin 2()lr2
.

CASE I-SYMMETRIC LOAD PERPENDICULAR TO RIDGE

(26)

Suppose the shell is loaded by the force marked P 1 in Fig. l(a) which lies in the center
plane and is perpendicular to the ridge. Because ofthe symmetric nature ofthe deformations
about the center plane we have

U~l)(Xl'Yl) = U~2)(X2'Y2) = ux(x,y),

U~l)(Xl'Yl) = U~2)(X2'Y2) = uy(x,y),

w(l)(X1'Yl) = W(2)(X2'Yz) = w(x,Y).

(27)

Four of the boundary conditions (6H13) are then satisfied identically, while the remaining
four become

Ux sin (X- w cos IX = 0,

ow
ax = 0,

N xx cos (X + v,., sin 1X = -1P1b(y),

N xy = O.

(28)

A formal application of the Fourier exponential transform to the problem leads to
expressions that contain the divergent integrals S~ t- 1 e- xt cos yt dt and S~ t- 2 e- xt
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cos yt dt which cannot be tolerated in the result. How to proceed is suggested by first
considering the function

(29)

with x > 0, - 00 < y < IX, t: > O. Differentiating this function we obtain integrals that
can be evaluated. Thus,

Dc -I

(l X

DC_I

ay

where r2 = x 2 + y2. Furthermore,

e- rx

---(x cos ev y sin r,y),r 2 ' .

e- rx

--'rtv cos t:y+x sin 8y),
r

(30)

lim ac_:.! = x _ .~_ log r,
I~O aX -,;2'- (Ix

I
. DC_I
1m

<,:--+0

y C
-r2 - .::;-'" log r.

oy

(31)

This suggests that the first divergent integral be replaced by -log r. Next considering the
second derivatives of the function

C 2(X, y; 8) = f" t- 2e- x1 Cos yt dt, (32)

where x > 0, - IX; < Y < IX, and 8 > 0, it is equally suggestive to replace the second
divergent integral by the function x(log r-l)- yB, where B = arctan tv/x). When this is
done, the following results emerge:

PI '
rp(x,y) = -'J 'h---[logr+Ctlx,y;a)],

_17: cos rx
(33)

lj;(x, y) =
P1(l- l'}

..._( ---.. --.. -[x(log r-l)- vO Co(x, y; a)],
217: I + 1') cos ex .

(34)

where

(36)

Since the Fourier exponential transform yielded divergent integrals which were
replaced in a somewhat arbitrary fashion by certain elementary functions, there is no
guarantee that (33)--(35) is the solution of the given problem. It is readily verified by direct
substitution, however, that (33)--(35) satisfy the field equations (3) and (5), as well as the
boundary conditions (28) and, thus, constitute the desired solution.
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The extensional displacements derived from (33) and (34) are

PI 1 22Gux = 2 ( )h [ - 2( og r+ Cd+(1 + v)a xCo],
n 1+ v cos a

2Guy PI [(1 v)(SI-8)+(1 +v)a2xSoJ,
2n(l + v)h cos :x

where -n12 S; e S; n12. The membrane forces follow from (2) as

P a2

Nxx = 2 hi (CO+xC I ),
n cos a

Pl a
2

N xy = --2-h--xSI ,
n cos a

P[a2

N = -------(CO-xC I ).
yy 2nh cos a

The membrane forces can also be obtained from the Airy stress function

Plh
X = --2--(y8+Co+xCJ

n cos IX

1635

(37)

(38)

(39)

Finally, the transverse deflection given by (35) yields the following expressions for the stress
resultants of the bending field:

PI [ (x
2

2 )JM XX =4. (1+v)C I-(I-v)2-axCo,
n SIn a r

M
xy

= PI(l.-V)(x;-a2xso), (40)
4n SIn IX r

M yy = 4 P~ [(1 + v)C [ +(1- v) (x:-a2xco)],
n SIll Ci r

Qx = ~--(-~+a2C),2nh Sill IX r 2 0 -

(41)

Qy = 2:1. (-~ +a2So) .
n SIn IX r

The limiting cases of a = 0 and IX = nl2 are special and need to be considered separately.

Limit of IX = 0

Noting that

1· 2C xIma 0 = 2'
.~o r

1· 2S YIma 0 = -2'
.~o r

(42)

1· 2 2xy
Ima SI = -4-'
.~o r
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and that Co, So, C 1, Sl' sin rxa2 Co , (sin rx)- IC 1 , (sin rx)-1[(xlr2)-a2 Co] and
(sin rx) -1[(Ylr2

) - a2 So] all vanish as rx -> 0, the field quantities can be evaluated without
difficulty. The results that emerge are precisely what one would expect on physical grounds:
the bending field vanishes, while the membrane field is the same as given by the Flamant
solution [11] for an elastic half-plane subjected to the normal force PIl2.

Limit of rx = nl2

The limiting case when the shell degenerates into a flat plate is not nearly as well
behaved as the previous one, because most of the field quantities diverge. An exception is
provided by the transverse shearing forces given by (41), which approach the proper values
for these quantities in the vicinity of a concentrated force acting perpendicularly to a flat
plate. More satisfactory results for this limiting case could be obtained in the framework
of distributions or generalized functions, but the returns would be marginal for our pur­
poses.

In view of the foregoing, further discussion is restricted to 0 < rx < n12.

THE NEAR AND FAR FIELDS FOR CASE I

The near (r -> 0) and far (r -> (0) fields of the stress resultants are obtained from the
general expressions (38), (40) and (41) by substituting the asymptotic forms (21) and (25) for
the auxiliary functions.

Using the superscript 0 for the quantities of the near field, we have

N~x = N~y = 0(1),

N~y = O(r),

° ° P1(l+v)M = M = -----logr+O(l),
xx yy 4n sin rx

° P1(l-v) xy
M x = ~----.--+o(I),

y 4n sin rx r2

(43)

(44)

Q~ = P1 .1'+0(1).
2nh sin rx r2

(45)

The dominant parts of the bending stress resultants are the same as the stress resultants
derived from the elementary biharmonic function

P h2

W O = 1. r2 log r.
8nD Sin rx

(46)

It may be noted that the bending quantities in the near field agree with the known results
also in the case of rx = n12.
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The membrane forces at the origin can be evaluated, since Co(O, 0; a) is an elementary
integral. Thus,

N xx(O, 0) = N yy(O, 0) =

(47)
N xy (0,0) = O.

Labelling the quantities of the far field with the superscript 00, the membrane forces
are

(48)

00 PI ( X x
3

) O( - 3N = - - --- + r ).
yy nh cos rx r2 r4

The dominant parts of the membrane forces in (48) can be derived from the Airy stress
function

(49)

(51)

(50)M':r

For the far field of the bending stress resultants we obtain

M':x PI, [_(I+V)~+4(2_v)X2_8(I_V)x
4

]+0(r- 4 ),
4na2sm IY. r2 r4 r6

Pl(l~V) (x y _ 4X
3y

) +0(r- 4),
2na2sm (J. r4 r6

Me$) = ;1, [(I+V) 12+ 4(1-2V)x;-8(I-v)x:]+0(r- 4
),

yy 4na sm IY. r r r

Q: = PI, (3~_ 4X
3

) +0(r- 5),
na2 h sm IX r4 r6

Qoo = PI (1'-_~2y) +0(r- 5 ).
y na2h sin Cf. r4 r6

The dominant parts of the bending stress resultants can be derived from the elementary
deflection function

(52)

DISCUSSION OF RESULTS FOR CASE I

Several interesting features in the behavior of the prismatic shell emerge immediately
from the asymptotic expansions of the stress resultants. Perhaps the most unexpected
result which seems to contradict intuition is that the membrane forces remain bounded at
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the point of application of the force PI for all If. > O. A physical explanation of this aspect of
the results can be devised, but the discussion of this point is better taken up after studying
the antisymmetric force P2 applied perpendicularly to the ridge. Equations (43) {45) show
that, while the membrane forces are of O(1), the moments are of O(log r) and the transverse
shearing forces of O(r- I) near the origin. The orders of the various near-field quantities
imply physically that the concentrated force PI is transmitted into the shell essentially
through bending action. Although the present analysis is not expected to give accurate
results near the ridge, especially for small If., it is reasonable to anticipate that this general
conclusion remains qualitatively correct in a real prismatic shell. The advice to the designer
is, therefore, that in the vicinity ofcolumns a prismatic shell be principally reinforced for the
transmission of moments and transverse shearing forces rather than membrane forces.

Tn a sense, exactly the opposite physical response ofthe prismatic shell emerges from the
expressions for the far field. Equations (48), (50) and (51) reveal that the membrane forces,
being of O(r- I), decay much slower than the moments and transverse shearing forces, which
are of O(r- 2

) and O(r- 3
), respectively. We can conclude, therefore, that the applied force

PI is diffused far away essentially by membrane action. It should be realized, of course,
that in a real case the far field is strongly affected, ifnot overwhelmed, by the effect ofsupports.
However, the trends predicted by the analysis of the far field are again suggestive for design,
especially the types of supports that would minimize bending.

The nature of the fields at intermediate positions can only be judged by evaluating the
auxiliary functions and representing the results graphically. Tn view of the large number of
field quantities involved in the problem, no parametric study for various values of If. and v
is attempted in the present context, and a few results are presented merely for the purpose of
conveying some idea about the more important stress resultants. Figure 2 shows the
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FIG. 2. Stress resultants N xx' M xx and Qx along the x-axis for rJ. = 45" and v = 0·3.
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variation of the membrane force N xx' bending moment M xx and transverse shearing force
Qx along the axis of symmetry, or y = 0, for the case of rx = 45° and v = 0·3. For the same
values of rx and v, the membrane force and bending moment transmitted by a section parallel
to the ridge are depicted in Fig. 3. Where appropriate, the near and far field approximations
are also indicated in both of these figures. Perhaps the most noteworthy feature of the
results is that the near field expansions do not approximate the stress resultants well at
distances from the ridge where the solution can be expected to be numerically accurate. In
contrast, the far field expansions do better than might be expected on physical grounds.
Thus at distances from the origin equal to ten to twenty times the thickness, the far field
expansions provide excellent approximations for the stress resultants.

10 r-----------,

3r-----------,

64

--- -M;r}

2

I
I

~/

o64

----N:l

2o

4

2

6

8

-y -y

FIG. 3. Stress resultants N xx and M xx along a line parallel to the ridge for C( = 45° and v = 0·3.
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A6cTpaKT-Pa60Ta paccMaTpHBaeT Bonpoc nOlleH 6elMoMeHTHoro 11 MOMeHTHoro COCTOllHI1H,

Bbl1BaHHblX B np"3MaTH'IeCKIX 060ll0'lKaX HarpyJKeHHbIX KOHl..(eIUp"TI'1eCKHMI CHllaMH, npI1JIOJKeH­

HbIMI1 K CBlIlliM 11 pe6paM MelKny nByMlI nllaCTHHKaMH. B BHny Toro, 'ITO OCHOBHbJe 3ana'll1 MallO

CB1I3aHbI C YCllOBl1l1MH onepaHHlI HllH KOHe'lHbIMH rpaHHl..(aMI1, paCCMaTpHBaeTCli HeOrpaHII'IeHHali

060JIO'lKa, COCTOliwaliCli 113 nByX nOJIy6ecKoHe'lHbiX nllaCTHHOK. TaKali reOMeTpl1l1 rrpllBOnHT K npliMoMy

aHaJIH3Y rrpe06pa30BaHIIlIX <!>ypbe.

Pe3YJIbTaTbi MOlKHa Bblpa3HTb B <!>opMe 3KcnOTeHUHallbHbiX IIHTerpallOB KOMnlleKCHoro apryMeHTa,

AJIli KOTOpblX cywecTBylOT Ta6llHUbl. Korna cocpenOTO'lHali CHlla AeHcTByeT B nllOCKOCTH CIIMMeTpHII

H rrepnenllKyllllpHa K pe6pY,Torna nOllBlllleTCli HeOlKllnaeMblH pelyllbTaT, COCTOllWIIH B TOM, 'ITO

ClIllbI B 6e3MOMeHTHOM COCTOllHHH OrpaHII'IeHHble B TO'lKe nplIllOlKeHHlI Harpy3KH. B rrpOTI1BonOJIO­

lKHOCTb, MOMeHTbI 11 rrOnepe'lHble CHJlbl cHHryllllpHbl B TO'lKe Harpy3KH. ACIIMOTII'IeCKHe BblpalKeHIISI,

AJIli rrOlleH Ha naJIeKOM paCTOllHIIII, YKalbiBalOT, 'ITO MeM6paHHbie YCIIJIHlI YMeHbWalOTCli 60JIee

MeAJIeHHO, '1eM MOMeHTbI II nOnepe'lHble CHJlbl. 3TII COCTOSlHHSI nllSl 6ml1KHX 11 J:\alleKHX rrOJIeH YKa3bIBaIOT,

'ITO CIIMMeTplI'leCKH npI1JIOlKeHHble nepneHnllKyllllpHble CHllbl nepeXOnllT B nplllMeTlI'IecKylO 060JlO'lKY.

rllaBHbIM 06a30M IlyTeM 113rll6a H IIce1aIDT ,aaJleKO B 6e1MOMeHTlJOM COCTOllHIIII.


